Path Aggregation Network for Instance Segmentation
نویسندگان
چکیده
The way that information propagates in neural networks is of great importance. In this paper, we propose Path Aggregation Network (PANet) aiming at boosting information flow in proposal-based instance segmentation framework. Specifically, we enhance the entire feature hierarchy with accurate localization signals in lower layers by bottom-up path augmentation, which shortens the information path between lower layers and topmost feature. We present adaptive feature pooling, which links feature grid and all feature levels to make useful information in each feature level propagate directly to following proposal subnetworks. A complementary branch capturing different views for each proposal is created to further improve mask prediction. These improvements are simple to implement, with subtle extra computational overhead. Our PANet reaches the 1 place in the COCO 2017 Challenge Instance Segmentation task and the 2 place in Object Detection task without large-batch training. It is also state-of-the-art on MVD and Cityscapes.
منابع مشابه
Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...
متن کاملBreast abnormalities segmentation using the wavelet transform coefficients aggregation
Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...
متن کاملNeural Network Approach for Herbal Medicine Market Segmentation
Market segmentation is the start point of executing targeted marketing strategy. This study aims to determine fit dimensions and appropriate specifications for the segmentation of herbal medicines market in order to provide production and market departments with fit strategies by identifying the profile of the market customers and recognizing their differences in the identified indices. This is...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملPose2Instance: Harnessing Keypoints for Person Instance Segmentation
Human keypoints are a well-studied representation of people. We explore how to use keypoint models to improve instance-level person segmentation. The main idea is to harness the notion of a distance transform of oracle provided keypoints or estimated keypoint heatmaps as a prior for person instance segmentation task within a deep neural network. For training and evaluation, we consider all thos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018